Question #f1b58

2 Answers
Mar 16, 2017

see explanation.

Explanation:

Using the #color(blue)"product to sum identity"#

#color(red)(bar(ul(|color(white)(2/2)color(black)(cosx cosy=1/2[cos(x+y)+cos(x-y)])color(white)(2/2)|)))#

#"here "x=(alpha+beta),y=(alpha-beta)#

#rArrx+y=alpha+beta+alpha-beta=2alpha#

#rArrx-y=alpha+beta-alpha+beta=2beta#

#rArrcos(alpha+beta)cos(alpha-beta)=1/2[cos2alpha+cos2beta]#

Using the #color(blue)"Double angle identities"#

#color(red)(bar(ul(|color(white)(2/2)color(black)(cos2x=1-2sin^2x=2cos^2x-1)color(white)(2/2)|)))#

#rArr1/2[cos2alpha+2cosbeta]#

#=1/2[1-2sin^2alpha+2cos^2beta-1]#

#=cos^2beta-sin^2alpha#

#"Since left side "=" right side"rArr"verified"#

Mar 17, 2017

see below

Explanation:

One way is as follows: start with the compound angle expansions

#cos(alpha+beta)cos(alpha-beta)#

#=(cosalphacosbeta-sinalphasinbeta)(cosalphacosbeta+sinalphasinbeta)#

this is the difference of squares , hence:

#=cos^2alphacos^2beta-sin^2alphasin^2beta#

now #sin^2x+cos^2x=1#

so #cos^2alpha=1-sin^2alpha#

& #sin^2beta=1-cos^2beta#

we have

#=(1-sin^2alpha)cos^2beta-sin^2alpha(1-cos^2beta)#

multiply out and simplify

#=cos^2beta-sin^2alphacos^2beta-sin^2alpha+sin^2alphacos^2beta#

#=cos^2betacancel(-sin^2alphacos^2beta)-sin^2alphacancel(+sin^2alphacos^2beta)#

#=cos^2beta-sin^2alpha" as required"#