Suppose that, #I=int_0^oolnx/(1+x^2)dx.#
We subst. #x=tany.:. dx=sec^2ydy.#
Further, #x=0 rArr y=0,"&, as "x to oo, y to pi/2.#
#:. I=int_0^(pi/2) (lntany/cancel(1+tan^2y))*cancel(sec^2y)dy, i.e., #
# I=int_0^(pi/2)lntanydy.........(star^1).#
Now, we know that, #int_0^af(y)dx=int_0^af(a-y)dx....(R).#
We apply the Result R to #(star^1)"with "a=pi/2, &, f(y)=lntany.#
#:. I=int_0^(pi/2)lntan(pi/2-y)dy, or, #
# I=int_0^(pi/2)lncotydy...................(star^2).#
#:. (star^1)+(star^2) rArr 2I=int_0^(pi/2)lntanydy+int_0^(pi/2)lncotydy,#
#:. 2I=int_0^(pi/2)[lntany+lncoty}dy,#
#=int_0^(pi/2)[ln(tany*coty)]dy,#
#=int_0^(pi/2)ln1dy,#
#:. 2I=int_0^(pi/2)0dy=0.#
# rArr I=0.#
Enjoy Maths.!