Question #37ae3

1 Answer
Oct 24, 2017

0.0.

Explanation:

Suppose that, I=int_0^oolnx/(1+x^2)dx.I=0lnx1+x2dx.

We subst. x=tany.:. dx=sec^2ydy.

Further, x=0 rArr y=0,"&, as "x to oo, y to pi/2.

:. I=int_0^(pi/2) (lntany/cancel(1+tan^2y))*cancel(sec^2y)dy, i.e.,

I=int_0^(pi/2)lntanydy.........(star^1).

Now, we know that, int_0^af(y)dx=int_0^af(a-y)dx....(R).

We apply the Result R to (star^1)"with "a=pi/2, &, f(y)=lntany.

:. I=int_0^(pi/2)lntan(pi/2-y)dy, or,

I=int_0^(pi/2)lncotydy...................(star^2).

:. (star^1)+(star^2) rArr 2I=int_0^(pi/2)lntanydy+int_0^(pi/2)lncotydy,

:. 2I=int_0^(pi/2)[lntany+lncoty}dy,

=int_0^(pi/2)[ln(tany*coty)]dy,

=int_0^(pi/2)ln1dy,

:. 2I=int_0^(pi/2)0dy=0.

rArr I=0.

Enjoy Maths.!