Suppose that, I=int_0^oolnx/(1+x^2)dx.I=∫∞0lnx1+x2dx.
We subst. x=tany.:. dx=sec^2ydy.
Further, x=0 rArr y=0,"&, as "x to oo, y to pi/2.
:. I=int_0^(pi/2) (lntany/cancel(1+tan^2y))*cancel(sec^2y)dy, i.e.,
I=int_0^(pi/2)lntanydy.........(star^1).
Now, we know that, int_0^af(y)dx=int_0^af(a-y)dx....(R).
We apply the Result R to (star^1)"with "a=pi/2, &, f(y)=lntany.
:. I=int_0^(pi/2)lntan(pi/2-y)dy, or,
I=int_0^(pi/2)lncotydy...................(star^2).
:. (star^1)+(star^2) rArr 2I=int_0^(pi/2)lntanydy+int_0^(pi/2)lncotydy,
:. 2I=int_0^(pi/2)[lntany+lncoty}dy,
=int_0^(pi/2)[ln(tany*coty)]dy,
=int_0^(pi/2)ln1dy,
:. 2I=int_0^(pi/2)0dy=0.
rArr I=0.
Enjoy Maths.!