How do you find the second derivative for the implicit equation x^2+y^2 = a^2x2+y2=a2?

2 Answers
Jun 29, 2017

(d^2y)/(dx^2) = -a^2/y^3 d2ydx2=a2y3

Explanation:

We have:

x^2+y^2 = a^2 x2+y2=a2

This represents a circle of radius aa centred on the origin.

If we differentiate implicitly wrt xx we get:

2x + 2ydy/dx = 0 2x+2ydydx=0

:. x + ydy/dx = 0 => dy/dx = -x/y

Now, differentiating implicitly again, and applying the product rule, we get:

:. 1 + (y)((d^2y)/(dx^2)) + (dy/dx)(dy/dx) = 0

:. 1 + y(d^2y)/(dx^2) + (dy/dx)^2 = 0

:. 1 + y(d^2y)/(dx^2) + (-x/y)^2 = 0

:. 1 + y(d^2y)/(dx^2) + x^2/y^2 = 0

:. y(d^2y)/(dx^2) + (x^2+y^2)/y^2 = 0

:. y(d^2y)/(dx^2) + a^2/y^2 = 0

:. (d^2y)/(dx^2) = -a^2/y^3

Jun 29, 2017

(d^2y)/dx^2=-a^2/y^3.

Explanation:

x^2+y^2=a^2.

:. d/dx(x^2+y^2)=d/dx(a^2)=0.

:. d/dx(x^2)+d/dx(y^2)=0.

:. 2x+d/dx(y^2)=0.............(ast).

Here, by the Chain Rule, we see that,

d/dx(y^2)=d/dy(y^2)*dy/dx=2ydy/dx.

:. (ast) rArr 2x+2ydy/dx=0, or, x+ydy/dx=0....(ast_1).

To get the 2^(nd) order deri., we rediff. this eqn. w.r.t. x, & get,

1+d/dx(ydy/dx)=0............(star).

Here, for d/dx(ydy/dx), we use the Product Rule :

d/dx(ydy/dx)=yd/dx(dy/dx)+(dy/dx)(d/dx(y)),

=y(d^2y)/dx^2+(dy/dx)(dy/dx), i.e., y(d^2y)/dx^2+(dy/dx)^2.

:. (star) rArr 1+y(d^2y)/dx^2+(dy/dx)^2=0......(star_1).

But, (ast_1) rArr dy/dx=-x/y.

:. (star_1) rArr 1+y(d^2y)/dx^2+(-x/y)^2=0.

rArr y^2+y^3(d^2y)/dx^2+x^2=0.

rArr y^3(d^2y)/dx^2=-(x^2+y^2), i.e.,

because, x^2+y^2=a^2, :., (d^2y)/dx^2=-a^2/y^3.

Alternatively, the same result can be obtained by diff.ing, w.r.t.

x, the eqn. dy/dx=-x/y.

Enjoy Maths.!