Question #f4b07

2 Answers
Mar 21, 2017

I tried this:

Explanation:

Have a look:
enter image source here

Mar 21, 2017

Please see the proofs below.

Explanation:

Verify:

cos(u)/(1-sin(u))=(1+sin(u))/cos(u)cos(u)1sin(u)=1+sin(u)cos(u)

Multiply the left side by 1 in the form of (1 + sin(u))/(1 + sin(u))1+sin(u)1+sin(u):

(1 + sin(u))/(1 + sin(u))cos(u)/(1-sin(u))=(1+sin(u))/cos(u)1+sin(u)1+sin(u)cos(u)1sin(u)=1+sin(u)cos(u)

The denominator becomes the difference of two squares:

((1 + sin(u))cos(u))/(1-sin^2(u))=(1+sin(u))/cos(u)(1+sin(u))cos(u)1sin2(u)=1+sin(u)cos(u)

Substitute cos^2(u)cos2(u) for (1-sin^2(u))(1sin2(u)):

((1 + sin(u))cos(u))/cos^2(u)=(1+sin(u))/cos(u)(1+sin(u))cos(u)cos2(u)=1+sin(u)cos(u)

The cosine in the numerator cancels one of the cosines in the denominator:

(1 + sin(u))/cos(u)=(1+sin(u))/cos(u)1+sin(u)cos(u)=1+sin(u)cos(u)

Verified.

Verify:

tan^2(x)/(sec(x)+1) = sec(x)-1tan2(x)sec(x)+1=sec(x)1

Multiply the left side by 1 in the form (sec(x)-1)/(sec(x)-1)sec(x)1sec(x)1

(sec(x)-1)/(sec(x)-1)tan^2(x)/(sec(x)+1) = sec(x)-1sec(x)1sec(x)1tan2(x)sec(x)+1=sec(x)1

The numerator becomes the difference of two squares:

(sec(x)-1)tan^2(x)/(sec^2(x)-1) = sec(x)-1(sec(x)1)tan2(x)sec2(x)1=sec(x)1

Substitute tan^2(x)tan2(x) for sec^2(x)-1sec2(x)1

(sec(x)-1)tan^2(x)/(sec^2(x)-1) = sec(x)-1(sec(x)1)tan2(x)sec2(x)1=sec(x)1

The fraction becomes 1:

sec(x)-1 = sec(x)-1sec(x)1=sec(x)1

Verified.