let we take LHS to prove RHS.
#tan 2theta = sin(2theta) / cos (2theta) #
#sin(2theta) = 2sin theta cos theta, and cos (2theta)= cos^2 theta - sin^2 theta #
therefore,
#tan 2theta= (2sin theta cos theta)/ (cos^2 theta - sin^2 theta)#
divide by #cos^2 theta#
#= (2sin theta cos theta)/cos^2 theta/ ((cos^2 theta - sin^2 theta))/cos^2 theta#
#= (2sin theta cos theta)/cos ^2theta/ (cos^2 theta/cos^2 theta - sin^2 theta/cos^2 theta)#
#= (2sin theta )/cos theta/ (1 - sin^2 theta/cos^2 theta)#
#= (2 tan theta)/ (1 - tan^2 theta)#