Question #64a98

1 Answer
Mar 26, 2017

I get a value of the order of 1014 for Hydrogen
and a value of the order of 1013 for Uranium238

Explanation:

A. Let us take the example of hydrogen atom.
Atomic radius, Bohr's radius a0: 5.29×1011m
Atomic mass: 1.00794u
Nuclear diameter: 1.75×1015m
Mass of a proton: 1.00728u

Average atomic density ρa=massvolume
ρa=1.0079443π(5.29×1011)3
Similarly Nuclear density ρn=1.0072843π(1.752×1015)3
Ratio of two densities ρnρa=1.007281.00794×(5.29×1011)3(0.875×1015)3
ρnρa~1014
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
B. Let us now take the example of Uranium238 atom.
Atomic radius, empirical: 1.56×1010m
Average Atomic mass: 238.029u
Nuclear diameter: 15×1015m
Mass of nucleas: 238.0508u

Average atomic density ρa=massvolume
ρa=238.02943π(1.56×1010)3
Similarly Nuclear density ρn=238.050843π(152×1015)3
Ratio of two densities ρnρa=238.0508238.029×(1.56×1010)3(7.5×1015)3
ρnρa~1013