You may know the straightaway rule:
#intsec(t)dt=ln(abs(sec(t)+tan(t)))+C#
In case you don't, we can derive this rule and solve your problem simultaneously.
#intsec(x+a)dx#
This is a difficult move to foresee, which is why it's likely a good move to memorize the secant integral. But, we can do the integration by multiplying the numerator and denominator by #sec(x+a)+tan(x+a)#:
#=intsec(x+a)(sec(x+a)+tan(x+a))/(sec(x+a)+tan(x+a))dx#
#=int(sec^2(x+a)+sec(x+a)tan(x+a))/(sec(x+a)+tan(x+a))dx#
Now, let #u=sec(x+a)+tan(x+a)#. Its derivative is: #du=(sec(x+a)tan(x+a)+sec^2(x+a))dx#.
Note that #u# is the denominator and #du# is the numerator:
#=int(du)/u#
Which is the natural logarithm integral:
#=ln(absu)+C#
So:
#=ln(abs(sec(x+a)+tan(x+a)))+C#
Which follows the rule #intsec(t)dt=ln(abs(sec(t)+tan(t)))+C# if you, from the outset, let #t=x+a# implying that #dt=dx#.