Question #84027 Trigonometry Inverse Trigonometric Functions Inverse Trigonometric Properties 1 Answer Scott F. Mar 30, 2017 #32x^2-1# Explanation: Let #theta=cos^("-"1)(4x)# #cos(2cos^("-"1)(4x)=cos(2theta)# Use the double-angle formula #cos(2alpha)=2cos^2alpha-1# #cos(2theta)=2cos^2theta-1# #theta# is some angle the cosine of which is #4x#, so #cos^2theta=(4x)^2# #2cos^2theta-1=2(4x)^2-1# #2(4x)^2-1=2(16x^2)-1# #2(16x^2)-1=32x^2-1# Answer link Related questions How do you use the properties of inverse trigonometric functions to evaluate #tan(arcsin (0.31))#? What is #\sin ( sin^{-1} frac{sqrt{2}}{2})#? How do you find the exact value of #\cos(tan^{-1}sqrt{3})#? How do you evaluate #\sec^{-1} \sqrt{2} #? How do you find #cos( cot^{-1} sqrt{3} )# without a calculator? How do you rewrite #sec^2 (tan^{-1} x)# in terms of x? How do you use the inverse trigonometric properties to rewrite expressions in terms of x? How do you calculate #sin^-1(0.1)#? How do you solve the inverse trig function #cos^-1 (-sqrt2/2)#? How do you solve the inverse trig function #sin(sin^-1 (1/3))#? See all questions in Inverse Trigonometric Properties Impact of this question 1529 views around the world You can reuse this answer Creative Commons License