cosx=cos(x2+x2)=cos2(x2)−sin2(x2)=2cos2(x2)−1
cosx=2cos2(x2)−1
cosx+1=2cos2(x2)
1+cosx2=cos2(x2)
±√1+cosx2=cos(x2)→ proved for all x.
To find their value when x=π2
A . cos(x2)=cos(π4)=1√2
B. ±√1+cosx2=±√1+cos(π2)2
=±√1+02=±√12=±√1√2=±1√2
since x in quadrant I, √1+cosx2=1√2