Question #2712b

1 Answer
Mar 31, 2017

12

Explanation:

cosx=cos(x2+x2)=cos2(x2)sin2(x2)=2cos2(x2)1

cosx=2cos2(x2)1

cosx+1=2cos2(x2)

1+cosx2=cos2(x2)

±1+cosx2=cos(x2) proved for all x.

To find their value when x=π2

A . cos(x2)=cos(π4)=12

B. ±1+cosx2=±1+cos(π2)2

=±1+02=±12=±12=±12
since x in quadrant I, 1+cosx2=12