Question #e9930
1 Answer
see explanation.
Explanation:
Utilise the
#color(blue)"trigonometric identity"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(sin^2theta+cos^2theta=1)color(white)(2/2)|)))# From which:
#sin^2theta=1-cos^2theta;cos^2theta=1-sin^2theta#
#• 1/(sin^2theta)-(cos^2theta)/(sin^2theta)# Since both fractions have a common denominator we can subtract the numerators while leaving the denominator.
#=(1-cos^2theta)/(sin^2theta)#
#=cancel(sin^2theta)^1/cancel(sin^2theta)^1larrcolor(red)("from above identity"#
#=1=" right side "rArr" verified"#
#• 1/(cos^2theta)+1/(sin^2theta)# To obtain a
#color(blue)" common denominator".#
multiply the numerator/denominator of#1/(cos^2theta)" by " sin^2theta"#
multiply the numerator/denominator of#1/(sin^2theta)" by " cos^2theta#
#rArr(sin^2theta)/(cos^2thetasin^2theta)+(cos^2theta)/(sin^2thetacos^2theta)#
#=(sin^2theta+cos^2theta)/(cos^2thetasin^2theta)#
#=1/(cos^2thetasin^2theta)larrcolor(red)" from above identity"#
#"Thus left side "=" right side "rArr" verified"#
#• 1/(1+sintheta)+1/(1-sintheta)# To obtain a
#color(blue)"common denominator"# multiply numerator/denominator of fraction on left by
#1-sintheta# multiply the one on the right by
#1+sintheta#
#=(1-sintheta)/((1+sintheta)(1-sintheta))+(1+sintheta)/((1-sintheta)(1+sintheta))#
#=(1cancel(-sintheta)+1cancel(+sintheta))/(1-sin^2theta)#
#=2/cos^2thetalarrcolor(red)" from above identity""#
#"left side "=" right side " rArr" verified"#