How do you show that #(tan^2x + 1)/(1 - tan^2x) = sec^2x#?

3 Answers
Apr 3, 2017

This is true for all values of x, because the attempt to solve resulted in a proof.

Explanation:

Given: #(tan^2(x) + 1)/(1 - tan^2(x)) = sec(2x)#

Write every occurrence of #tan^2(x)" as " sin^2(x)/cos^2(x)#

#(sin^2(x)/cos^2(x) + 1)/(1 - sin^2(x)/cos^2(x)) = sec(2x)#

Multiply the left side by 1 in the form of #cos^2(x)/cos^2(x)#

#(sin^2(x)/cos^2(x) + 1)/(1 - sin^2(x)/cos^2(x))cos^2(x)/cos^2(x) = sec(2x)#

Simplify the left side:

#(sin^2(x)+cos^2(x))/(cos^2(x) - sin^2(x)) = sec(2x)#

The numerator is known to be equal to 1:

#1/(cos^2(x) - sin^2(x)) = sec(2x)#

The denominator is known to be equal to #cos(2x)#

#1/cos(2x) = sec(2x)#

This is a well known identity and, therefore, is true for every value of x.

#sec(2x) = sec(2x)#

Apr 3, 2017

We start by rewriting everything in sine and cosine. We do this using the identities #sectheta = 1/costheta# and #tantheta = sintheta/costheta#.

#(sin^2x/cos^2x + 1)/(1 -sin^2x/cos^2x) = 1/cos(2x)#

#((sin^2x + cos^2x)/cos^2x)/((cos^2x - sin^2x)/cos^2x) = 1/cos(2x)#

Use #cos(2x) = cos^2x - sin^2x# and #sin^2x + cos^2x = 1#.

#(1/cos^2x)((cos^2x)/(cos^2x - sin^2x)) = 1/(cos^2x - sin^2x)#

#1/(cos^2x - sin^2x) = 1/(cos^2x- sin^2x)#

Hopefully this helps!

Apr 3, 2017

Use Pythagorean identity #tan^2 x + 1 = sec^2 x# and double angle identity #cos2x = cos^2x-sin^2x#.

Explanation:

Using the Pythagorean identity #tan^2 x + 1 = sec^2 x#, we get

#(tan^2 x + 1)/(1 - tan^2 x) = (sec^2 x)/(1 - tan^2x)#

#color(white)((tan^2 x + 1)/(1 - tan^2 x)) = 1/(cos^2x(1 - tan^2x))# (since #sec theta = 1/cos theta#)

#color(white)((tan^2 x + 1)/(1 - tan^2 x)) = 1/(cos^2x - sin^2x)"      "# (distributing the #cos^2x#)

#color(white)((tan^2 x + 1)/(1 - tan^2 x)) = 1/(cos2x)"              "# (by double angle identity)

#color(white)((tan^2 x + 1)/(1 - tan^2 x)) = sec2x"                "# (by reciprocal identity)