Question #6cafa

1 Answer
May 12, 2017

y'' - y' - 2y =-12(x + 2)

Explanation:

Given: y = e^(2x) + 3(2x+3) = e^(2x) +6x + 9

Find the first derivative using (e^u)' = u' e^u:

Let u = 2x; " " u' = 2

y ' = 2e^(2x) + 6

y'' = 4 e^(2x)

Find " "y'' - y' - 2y:

y'' - y' - 2y = 4 e^(2x) - ( 2e^(2x) + 6) - 2(e^(2x) +6x + 9)

Distribute the negatives:

y'' - y' - 2y = 4 e^(2x) - 2e^(2x) - 6 -2e^(2x) - 12x -18

Simplify by combining like-terms:

y'' - y' - 2y = -6 - 12x - 18 = -24 -12x

Factor: " "y'' - y' - 2y =-12(x + 2)