Question #1eebf Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Douglas K. Apr 7, 2017 #int(cos(2x)/sqrt(1+sin(2x)))dx = sqrt(1+sin(2x))+ C# Explanation: Let #u = 1 + sin(2x)#, then #du = 2cos(2x)dx# #cos(2x)dx = 1/2du# #int(cos(2x)/sqrt(1+sin(2x)))dx = # #1/2int(1/sqrtu)du = # #sqrtu+C = # #sqrt(1+sin(2x))+ C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1324 views around the world You can reuse this answer Creative Commons License