Question #bf61e

1 Answer
Jul 22, 2017

Yes, a precipitate will form. The procedure is the same as in your diagram.

Explanation:

Step 1. Determine the moles of each ion used

The equation for the reaction is:

"NiF"_2"(aq)" + "2NaOH(aq)" → "Ni(OH)"_2"(s)" + "2NaF(aq)"

"Moles of OH"^"-"

= 0.0180 color(red)(cancel(color(black)("L NaOH solution"))) × (4.6 × 10^"-4" color(red)(cancel(color(black)("mol NaOH"))))/(1 color(red)(cancel(color(black)("L NaOH solution")))) × "1 mol OH"^"-"/(1 color(red)(cancel(color(black)("mol NaOH")))) = 8.28 × 10^"-6" color(white)(l)"mol OH"^"-"

"Moles of Ni"^"2+"

= 0.0250 color(red)(cancel(color(black)("L NiF"_2 color(white)(l)"solution"))) × (8.92 × 10^"-4" color(red)(cancel(color(black)("mol NiF"_2))))/(1 color(red)(cancel(color(black)("L NiF"_2color(white)(l)color(white)(l) "solution")))) × "1 mol Ni"^"2+"/(1 color(red)(cancel(color(black)("mol NiF"_2))))

= 2.230 × 10^"-5" color(white)(l)"mol Ni"^"2+"

Step 2. Determine the initial concentrations of each ion in the total volume

V_text(tot) = "(0.0180 + 0.0250) L = 0.0430 L"

["Ni"^"2+"] = (2.230 × 10^"-5" color(white)(l)"mol")/("0.0430 L") = 5.186 × 10^"-4" "mol/L"

["OH"^"-"] = (8.28 × 10^"-6" color(white)(l)"mol")/("0.0430 L") = 1.926 × 10^"-4" "mol/L"

Step 3. Compute the reaction quotient

"Ni(OH)"_2 ⇌ "Ni"^"2+" + 2"OH"^"-"

Q = ["Ni"^"2+"]["OH"^"-"]^2 = 5.186 × 10^"-4" × (1.926 × 10^"-4")^2 = 1.922 × 10^"-11"

Step 4. Compare Q to K_text(sp)

Q = 1.922 × 10^"-11"; K_text(sp) = 5.48 × 10^"-16"

Q > K_text(sp), therefore "Ni(OH)"_2 precipitates.