Question #8bd05

3 Answers
Apr 13, 2017

See the Explanation.

Explanation:

Recall that, #costheta=sin(90^@-theta)..........(1)#

#theta=60^@+x rArr90^@-theta=90^@-(60^@+x)=30^@-x.#

#:.," by "(1), cos(60^@+x)=sin(30^@-x).#

Hence, the Verification.

Apr 13, 2017

Proved.

Explanation:

Prove: #cos(60^@ +x)=sin(30^@-x)#

Use the identity #cos(A+B) = cos(A)cos(B)-sin(A)sin(B)# where #A = 60^@ # and #B = x# on the left side:

#cos(60^@)cos(x)+sin(60^@)sin(x)=sin(30^@-x)#

Use the fact #cos(60^@) = sin(30^@)# on the left side:

#sin(30^@)cos(x)+sin(60^@)sin(x)=sin(30^@-x)#

Use the fact #sin(60^@) = cos(30^@)# on the left side:

#sin(30^@)cos(x)+cos(30^@)sin(x)=sin(30^@-x)#

Substitute -x for x on the left side:

#sin(30^@)cos(-x)+cos(30^@)sin(-x)=sin(30^@-x)#

Use the fact that the cosine function is even (#cos(-x) = cos(x)#) on the left side:

#sin(30^@)cos(x)+cos(30^@)sin(-x)=sin(30^@-x)#

Use the fact that the sine function is odd (#sin(-x) = -sin(x)#) on the left side:

#sin(30^@)cos(x)-cos(30^@)sin(x)=sin(30^@-x)#

Use the identity #sin(A-B) = sin(A)cos(B)-cos(A)sin(B)# where #A = 30^@ # and #B = x# on the left side:

#sin(30^@-x)=sin(30^@-x)#

Q.E.D.

Apr 13, 2017

see explanation.

Explanation:

Simplify both sides of the identity and compare.

Using the following #color(blue)"Addition formulae"#

#• sin(A-B)=sinAcosB-cosAsinB#

#• cos(A+B)=cosAcosB-sinAsinB#

#"left side " = cos(60+x)^@#

#color(white)(left side)=cos60^@cosx^@-sin60^@sinx^@#

#color(white)(left side)=1/2cosx^@-sqrt3/2sinx^@larr" left side"#

#color(orange)"Reminder" [cos60^@=sin30^@=1/2]#

#"and " [cos30^@=sin60^@=sqrt3/2]#

#"right side " =sin(30-x)^@#

#color(white)(right side)=sin30^@cosx^@-cos30^@sinx^@#

#color(white)(right side)=1/2cosx^@-sqrt3/2sinx^@larr" right side"#

#"left side " =" right side "rArr" verified"#