Question #0b785

1 Answer
Apr 14, 2017

The vector projection is =13/97<7,-8,-9>=1397<7,8,9>
The scalar projection is =26/sqrt194=26194

Explanation:

The vector projection of vecAA over vecBB is

=(vecA.vecB)/(||vecB||^2)vecB=A.BB2B

vecA=<2,-6,4>A=<2,6,4>

vecB=<7,-8,-9>B=<7,8,9>

The dot product is

vecA.vecB=<2,-6,4>.<7,-8,-9> =(2*7+6*8-9*4)=14+48-36=26A.B=<2,6,4>.<7,8,9>=(27+6894)=14+4836=26

The modulus of vecBB is

=||vecB||=||<7,-8,-9>||=sqrt(7^2+8^2+9^2)=sqrt194=B=||<7,8,9>||=72+82+92=194

The vector projection is

=26/194<7,-8,-9>=26194<7,8,9>

The scalar projection is

=(vecA.vecB)/(||vecB||)=26/sqrt194=A.BB=26194