How do you integrate ∫x√3x+1dx?
1 Answer
Apr 15, 2017
Explanation:
You will need substitution in addition to integration by parts. Let
∫√3x+1=√t⋅dt3=13√tdt=29t32=29(3x+1)32
Apply integration by parts now.
∫udv=uv−∫vdu
∫x√3x+1=29x(3x+1)32−∫29(3x+1)32dx
∫x√3x+1=29x(3x+1)32−29∫(3x+1)32dx
Now let
∫(3x+1)32=13∫n32dn=215n52=215(3x+1)52
∫x√3x+1=29x(3x+1)32−29(215)(3x+1)52+C
∫x√3x+1=29x(3x+1)32−4135(3x+1)52+C
Hopefully this helps!