Simplify sin^4x-cos^4x+cos^2xsin4xcos4x+cos2x?

2 Answers
Apr 17, 2017

The answer is =sin^2x=sin2x

Explanation:

We need

sin^2x+cos^2x=1sin2x+cos2x=1

a^2-b^2=(a+b)(a-b)a2b2=(a+b)(ab)

a^4-b^4=(a^2+b^2)(a^2-b^2)a4b4=(a2+b2)(a2b2)

The expression is

sin^4x-cos^4x+cos^2xsin4xcos4x+cos2x

=(sin^2x+cos^2x)(sin^2x-cos^2x)+cos^2x=(sin2x+cos2x)(sin2xcos2x)+cos2x

=(sin^2x-cancelcos^2x)+cancelcos^2x

=sin^2x

Apr 17, 2017

sin^4x-cos^4x+cos^2x=sin^2x

Explanation:

sin^4x-cos^4x+cos^2x

= (sin^2x+cos^2x)(sin^2x-cos^2x)+cos^2x

= sin^2x-cos^2x+cos^2x

= sin^2x