Calculate #x# in #3/(x^2-6x+8)-6/(x^2-16)<=0# ?
2 Answers
See below.
Explanation:
If
Now we have the sign dependence
Then the inequality is true for
Explanation:
#"Express the rational functions as a single rational function"#
#3/(x^2-6x+8)-6/(x^2-16)<=0#
#"factorise the denominators"#
#3/((x-2)(x-4))-6/((x-4)(x+4))<=0#
#rArr(-3(x-8))/((x-2)(x-4)(x+4))<=0#
#"the zero's of the numerator/denominator are"#
#" numerator " x=8, "denominator " x=2,x=4,x=-4# These indicate where the rational function may change sign and which values x cannot be on the denominator.
#"the intervals for consideration are"#
#x<-4,color(white)(x)-4 < x < 2,color(white)(x)2 < x < 4,4 < x <=8,x > 8#
We want to find where the function is negative, that is < 0
Substitute each test point into the function and consider it's sign.
#color(red)(x=-6)to (+)/(-)to color(blue)" negative"#
#color(red)(x=-2)to(+)/(+)tocolor(red)" positive"#
#color(red)(x=3)to(+)/(-)tocolor(blue)" negative"#
#color(red)(x=6)to(+)/(+)tocolor(red)" positive"#
#color(red)(x=8)to0/(+)tocolor(magenta)" x-intercept"#
#color(red)(x=10)to(-)/(+)tocolor(blue)" negative"#
#rArr(-oo,-4)uu(2,4)uu[8,+oo)#
graph{(-3(x-8))/((x-2)(x-4)(x+4)) [-10, 10, -5, 5]}