If #a+b+c=7#, #a^2+b^2+c^2=35# and #a^3+b^3+c^3=151#, then what is #abc# ?
3 Answers
Explanation:
Explanation:
Given:
#{ (a+b+c=7), (a^2+b^2+c^2=35), (a^3+b^3+c^3=151) :}#
Note that:
#(a+b+c)^3#
#= a^3+b^3+c^3+3ab^2+3a^2b+3bc^2+3b^2c+3ca^2+3ac^2+6abc#
#(a+b+c)(a^2+b^2+c^2)#
#= a^3+b^3+c^3+ab^2+a^2b+bc^2+b^2c+ca^2+c^2a#
So:
#6abc = (a+b+c)^3-3(a+b+c)(a^2+b^2+c^2)+2(a^3+b^3+c^3)#
#color(white)(6abc) = 7^3-3(7)(35)+2(151)#
#color(white)(6abc) = 343-735+302#
#color(white)(6abc) = -90#
Dividing both sides by
#abc = -15#
Explanation:
We will use the following Result :
Now,
But, we are given that,
Thus, altogether, we have,
Using all these in
Respcted George C. Sir.
Enjoy Maths.!