We need
#(a+b)(a-b)=a^2-b^2#
#sin^2x+cos^2x=1#
#cos(x+y)=cosxcosy-sinxsiny#
#cos(x-y)=cosxcosy+sinxsiny#
#sin(x+y)=sinxcosy+sinycosx#
#sin(x-y)=sinxcosy-sinycosx#
Therefore,
#cos(x+y)*cos(x-y)=(cosxcosy-sinxsiny)(cosxcosy+sinxsiny)#
#=cos^2xcos^2y-sin^2xsin^2y#
#sin(x+y)*sin(x-y)=(sinxcosy+sinycosx)(sinxcosy-sinycosx)#
#=sin^2xcos^2y-sin^2ycos^2x#
So,
#LHS=cos(x+y)*cos(x-y)+sin(x+y)*sin(x-y)#
#=cos^2xcos^2y-sin^2xsin^2y+sin^2xcos^2y-sin^2ycos^2x#
#=cos^2y(cos^2x+sin^2x)-sin^2y(sin^2x+cos^2x)#
#=cos^2y-sin^2y#
#=LHS#
#QED#