Question #13f28

1 Answer
May 13, 2017

n="volume"/"molar volume"=0.442/22.7=0.0195" mol"n=volumemolar volume=0.44222.7=0.0195 mol

"molar mass"="mass"/"n"=2.87/0.0195=147" g"" mol"^-1molar mass=massn=2.870.0195=147 g mol1

Explanation:

STP = standard temperature and pressure

P = 100 kPa
T = 273.15 K

Assuming an ideal gas, it will obey the Ideal Gas Law:

PV = nRTPV=nRT

Rearranging, we get

V="nRT"/"P"V=nRTP

Where R is the Gas Constant

R=8.314" J " "K"^-1 " mol"^-1R=8.314 J K1 mol1

Using the above value for the gas constant (R) and pressure in kPa, the volume will come out with units of L.

We can use the Ideal Gas Law to solve for the volume that 1 mole of any ideal gas occupies at 273.15 K and 100 kPa:

"molar volume"=(1*8.314*273.15)/100=22.7" L"molar volume=18.314273.15100=22.7 L

Next, we find the number of moles of gas that we have by dividing the known volume by the molar volume.

n="volume"/"molar volume"=0.442/22.7=0.0195" mol"n=volumemolar volume=0.44222.7=0.0195 mol

Finally, rearrange the mole formula to solve for the molar mass.

n="mass"/"molar mass"n=massmolar mass

"molar mass"="mass"/"n"=2.87/0.0195=147" g"" mol"^-1molar mass=massn=2.870.0195=147 g mol1