What is the derivative of y= xlnxy=xlnx?

1 Answer
May 16, 2017

dy/dx = 1 + lnx dydx=1+lnx

Explanation:

We have:

y= xlnxy=xlnx

We can apply the product rule to get:

dy/dx = (x)(d/dx lnx) + (d/dxx)(lnx) dydx=(x)(ddxlnx)+(ddxx)(lnx)

Noting a standard calculus result:

d/dx lnx = 1/x ddxlnx=1x

We get:

dy/dx = x*1/x + 1*lnx dydx=x1x+1lnx

" " = 1 + lnx =1+lnx

Corollary
We have just shown that:

d/dx (xlnx) = 1 + ln x ddx(xlnx)=1+lnx

If we now integrate both sides, then we get:

\ \ \ \ \ xlnx = int \ (1 + ln x) \ dx

:. xlnx = x -c + int \ ln x \ dx

Hence:

int \ ln x \ dx = xlnx -x +c