What is the derivative of y= xlnxy=xlnx?
1 Answer
May 16, 2017
dy/dx = 1 + lnx dydx=1+lnx
Explanation:
We have:
y= xlnxy=xlnx
We can apply the product rule to get:
dy/dx = (x)(d/dx lnx) + (d/dxx)(lnx) dydx=(x)(ddxlnx)+(ddxx)(lnx)
Noting a standard calculus result:
d/dx lnx = 1/x ddxlnx=1x
We get:
dy/dx = x*1/x + 1*lnx dydx=x⋅1x+1⋅lnx
" " = 1 + lnx =1+lnx
Corollary
We have just shown that:
d/dx (xlnx) = 1 + ln x ddx(xlnx)=1+lnx
If we now integrate both sides, then we get:
\ \ \ \ \ xlnx = int \ (1 + ln x) \ dx
:. xlnx = x -c + int \ ln x \ dx
Hence:
int \ ln x \ dx = xlnx -x +c