Find dy/dxdydx if y^2=x(x-1)^2y2=x(x−1)2?
1 Answer
May 25, 2017
dy/dx = ((x-1)(3x-1))/(2y) dydx=(x−1)(3x−1)2y
Explanation:
We have:
y^2 = x(x-1)^2 y2=x(x−1)2
Differentiating LHS implicitly, and RHS using the product rule along with the chain rule we get:
(d/dyy^2)(dy/dx) = (x)(d/dx(x-1)^2) + (d/dx x)((x-1)^2) (ddyy2)(dydx)=(x)(ddx(x−1)2)+(ddxx)((x−1)2)
:. 2ydy/dx = x(2(x-1)(1)) + (1)(x-1)^2
:. 2ydy/dx = 2x(x-1) + (x-1)^2
:. 2ydy/dx = (x-1)(2x+(x-1))
:. 2ydy/dx = (x-1)(3x-1)
:. \ \ \ dy/dx = ((x-1)(3x-1))/(2y)