Evaluate the integral? int ln tanh(x/2)/cosh^2x dx lntanh(x2)cosh2xdx

2 Answers
Jul 24, 2017

I got

= tanh(x)ln(tanh(x/2)) - 2arctan(tanh(x/2)) + C=tanh(x)ln(tanh(x2))2arctan(tanh(x2))+C, " "x > 0 x>0


DISCLAIMER: VERY LONG ANSWER!

Well, I don't work with hyperbolics much, but I do know that:

  • the derivative of tanh(x)tanh(x) is still sech^2(x)sech2(x).
  • we still have cosh(x) = 1/(sech(x))cosh(x)=1sech(x).
  • we however, have that -sinh^2(x) + cosh^2(x) = 1sinh2(x)+cosh2(x)=1, so that tanh^2(x) + sech^2(x) = 1tanh2(x)+sech2(x)=1 and 1 + csch^2(x) = coth^2(x)1+csch2(x)=coth2(x).

So, we have:

= int sech^2(x)ln (tanh(x/2))dx=sech2(x)ln(tanh(x2))dx

Now let's try an integration by parts. Let:

u = ln(tanh(x/2))u=ln(tanh(x2))
dv = sech^2(x)dxdv=sech2(x)dx
du = (sech^2(x/2))/(2tanh(x/2))dxdu=sech2(x2)2tanh(x2)dx
v = tanh(x)v=tanh(x)

uv - intvduuvvdu

= tanh(x)ln(tanh(x/2)) - int (tanh(x)sech^2(x/2))/(2tanh(x/2))dx=tanh(x)ln(tanh(x2))tanh(x)sech2(x2)2tanh(x2)dx

With the above sechsech identity, this integral becomes:

int (tanh(x)sech^2(x/2))/(2tanh(x/2))dxtanh(x)sech2(x2)2tanh(x2)dx

= int (tanh(x))/(2tanh(x/2))dx - int (tanh(x) tanh^cancel(2)(x/2))/(2cancel(tanh(x/2)))dx

I had to look these identities up to verify them though:

  • sinh(u pm v) = sinhu coshv pm coshu sinhv
  • cosh(u pm v) = coshu coshv pm sinhu sinhv

Thus,

tanh(x) = tanh(x/2 + x/2) = sinh(x/2 + x/2)/(cosh(x/2 + x/2))

= (2sinh(x/2)cosh(x/2))/(cosh^2(x/2) + sinh^2(x/2)) xx (cosh^2(x/2))/(cosh^2(x/2))

= (2tanh(x/2))/(1 + tanh^2(x/2))

Therefore, the integral becomes:

= int cancel((2tanh(x/2)))/((1 + tanh^2(x/2))cancel(2tanh(x/2)))dx - cancel(1/2)int (cancel(2)tanh(x/2)tanh(x/2))/(1 + tanh^2(x/2)) xx (1//tanh^2(x/2))/(1//tanh^2(x/2))dx

= ul(int 1/(1 + tanh^2(x/2))dx - int 1/(coth^2(x/2) + 1)dx) " "bb((1) + ( 2))

For (1), let u = tanh(x/2). Then, du = 1/2 sech^2(x/2)dx = 1/2(1 - tanh^2(x/2))dx, so:

2int 1/(1 + tanh^2(x/2))dx

= 2 int 1/((1 + u^2)(1 - u^2))du

= 2 int 1/((1 + u^2)(1+u)(1-u))du = 2 int (Ax + B)/(1 + u^2) + C/(1 + u) + D/(1 - u)du

Through getting common denominators and using partial fraction decomposition, we obtain:

A = 0, B = 1/2, C = 1/4, D = -1/4

This gives for (1):

(1) = 2 cdot [ 1/2 arctan(tanh(x/2)) + 1/4 ln |1 + tanh(x/2)| - 1/4 ln|1 - tanh(x/2)|]

= ul(arctan(tanh(x/2)) + 1/2 ln |(1 + tanh(x/2))/(1 - tanh(x/2))|)

Now, for (2), we obtain the same thing, except in terms of coth(x/2) and we account for the opposite sign out front:

(2) = -arctan(coth(x/2)) - 1/2 ln |(1 + coth(x/2))/(1 - coth(x/2))|

= arctan(tanh(x/2)) - 1/2 ln |(tanh(x/2) + 1)/(tanh(x/2) - 1)|

= ul(arctan(tanh(x/2)) - 1/2 ln |(1 + tanh(x/2))/(1 - tanh(x/2))|)

In adding (1) and (2) together, the ln terms cancel to give:

(1) + (2) = 2arctan(tanh(x/2))

Therefore, the overall integral (the answer!) is:

color(blue)(barul(|stackrel(" ")(" "tanh(x)ln(tanh(x/2)) - 2arctan(tanh(x/2)) + C" ")|))

Jul 24, 2017

int \ ln tanh(x/2)/cosh^2x \ dx = tanh(x) \ lntanh(x/2) - 2 arctan(tanh(x/2)) + C

Explanation:

We seek:

I = int \ ln tanh(x/2)/cosh^2x \ dx

I will take a very similar approach to that of Truong-Son N. but I will simplify the expression in the integrand via an initial substitution. We can remove the half-angle via a substitution of the form:

u=x/2 => (du)/dx = 1/2 and x=2u

So then substituting into the integral, it becomes:

I = int \ ln tanhu/cosh^2 (2u) \ 2 \ du
:. I/2 = int \ ln tanhu \ sech^2 (2u) \ du

Then an application of Integration By Parts (IBP) will rmove the logarithm from the integrand:

Let { (U,=lntanh u, => , U',=sech^2u/tanh u), (V',=sech^2 (2u), =>, V,=1/2tanh(2u) ) :}

Then plugging into the IBP formula:

int \ (U)(V') \ dx = (U)(V) - int \ (V)(U') \ dx

Gives us

int \ (lntanhu)(sech^2(2u)) \ du = (lntanh)(1/2tanh(2u)) - int \ (1/2tanh(2u))(sech^2u/tanh u) \ du

:. I/2 = 1/2 \ tanh(2u) \ lntanhu - 1/2 J
:. \ \ I = tanh(2u) \ lntanh u- J ..... [A]

Where J=int \ tanh(2u)(sech^2u/tanh u) \ du , then. Using the hyperbolic identity:

tanh(2A) = (2 tanh(A))/{1 + tanh^2A)

We have:

J = int \ ((2 tanh(u))/(1 + tanh^2u))(sech^2u/tanh u) \ du
\ \ = 2 \ int \ ( sech^2u )/( 1 + tanh^2u ) \ du

And with this second integral, a simple substitution of the form:

v = tanhu => (dv)/(du) = sech^2u

Gives us after substituting into J:

J = 2 \ int \ 1/(1+v^2) \ dv
\ \ = 2 arctan(v) + C'

Inserting this result into [A] we get:

I = tanh(2u) \ lntanhu - 2 arctan(v) + C

And restoring the substitutions we get:

I = tanh(2x/2) \ lntanh(x/2) - 2 arctan(tanhu) + C
\ \ = tanh(x) \ lntanh(x/2) - 2 arctan(tanh(x/2)) + C