Evaluate the integral? int ln tanh(x/2)/cosh^2x dx ∫lntanh(x2)cosh2xdx
2 Answers
I got
= tanh(x)ln(tanh(x/2)) - 2arctan(tanh(x/2)) + C=tanh(x)ln(tanh(x2))−2arctan(tanh(x2))+C ," "x > 0 x>0
DISCLAIMER: VERY LONG ANSWER!
Well, I don't work with hyperbolics much, but I do know that:
- the derivative of
tanh(x)tanh(x) is stillsech^2(x)sech2(x) . - we still have
cosh(x) = 1/(sech(x))cosh(x)=1sech(x) . - we however, have that
-sinh^2(x) + cosh^2(x) = 1−sinh2(x)+cosh2(x)=1 , so thattanh^2(x) + sech^2(x) = 1tanh2(x)+sech2(x)=1 and1 + csch^2(x) = coth^2(x)1+csch2(x)=coth2(x) .
So, we have:
= int sech^2(x)ln (tanh(x/2))dx=∫sech2(x)ln(tanh(x2))dx
Now let's try an integration by parts. Let:
u = ln(tanh(x/2))u=ln(tanh(x2))
dv = sech^2(x)dxdv=sech2(x)dx
du = (sech^2(x/2))/(2tanh(x/2))dxdu=sech2(x2)2tanh(x2)dx
v = tanh(x)v=tanh(x)
uv - intvduuv−∫vdu
= tanh(x)ln(tanh(x/2)) - int (tanh(x)sech^2(x/2))/(2tanh(x/2))dx=tanh(x)ln(tanh(x2))−∫tanh(x)sech2(x2)2tanh(x2)dx
With the above
int (tanh(x)sech^2(x/2))/(2tanh(x/2))dx∫tanh(x)sech2(x2)2tanh(x2)dx
= int (tanh(x))/(2tanh(x/2))dx - int (tanh(x) tanh^cancel(2)(x/2))/(2cancel(tanh(x/2)))dx
I had to look these identities up to verify them though:
sinh(u pm v) = sinhu coshv pm coshu sinhv cosh(u pm v) = coshu coshv pm sinhu sinhv
Thus,
tanh(x) = tanh(x/2 + x/2) = sinh(x/2 + x/2)/(cosh(x/2 + x/2))
= (2sinh(x/2)cosh(x/2))/(cosh^2(x/2) + sinh^2(x/2)) xx (cosh^2(x/2))/(cosh^2(x/2))
= (2tanh(x/2))/(1 + tanh^2(x/2))
Therefore, the integral becomes:
= int cancel((2tanh(x/2)))/((1 + tanh^2(x/2))cancel(2tanh(x/2)))dx - cancel(1/2)int (cancel(2)tanh(x/2)tanh(x/2))/(1 + tanh^2(x/2)) xx (1//tanh^2(x/2))/(1//tanh^2(x/2))dx
= ul(int 1/(1 + tanh^2(x/2))dx - int 1/(coth^2(x/2) + 1)dx) " "bb((1) + ( 2))
For
2int 1/(1 + tanh^2(x/2))dx
= 2 int 1/((1 + u^2)(1 - u^2))du
= 2 int 1/((1 + u^2)(1+u)(1-u))du = 2 int (Ax + B)/(1 + u^2) + C/(1 + u) + D/(1 - u)du
Through getting common denominators and using partial fraction decomposition, we obtain:
A = 0, B = 1/2, C = 1/4, D = -1/4
This gives for
(1) = 2 cdot [ 1/2 arctan(tanh(x/2)) + 1/4 ln |1 + tanh(x/2)| - 1/4 ln|1 - tanh(x/2)|]
= ul(arctan(tanh(x/2)) + 1/2 ln |(1 + tanh(x/2))/(1 - tanh(x/2))|)
Now, for
(2) = -arctan(coth(x/2)) - 1/2 ln |(1 + coth(x/2))/(1 - coth(x/2))|
= arctan(tanh(x/2)) - 1/2 ln |(tanh(x/2) + 1)/(tanh(x/2) - 1)|
= ul(arctan(tanh(x/2)) - 1/2 ln |(1 + tanh(x/2))/(1 - tanh(x/2))|)
In adding
(1) + (2) = 2arctan(tanh(x/2))
Therefore, the overall integral (the answer!) is:
color(blue)(barul(|stackrel(" ")(" "tanh(x)ln(tanh(x/2)) - 2arctan(tanh(x/2)) + C" ")|))
int \ ln tanh(x/2)/cosh^2x \ dx = tanh(x) \ lntanh(x/2) - 2 arctan(tanh(x/2)) + C
Explanation:
We seek:
I = int \ ln tanh(x/2)/cosh^2x \ dx
I will take a very similar approach to that of Truong-Son N. but I will simplify the expression in the integrand via an initial substitution. We can remove the half-angle via a substitution of the form:
u=x/2 => (du)/dx = 1/2 andx=2u
So then substituting into the integral, it becomes:
I = int \ ln tanhu/cosh^2 (2u) \ 2 \ du
:. I/2 = int \ ln tanhu \ sech^2 (2u) \ du
Then an application of Integration By Parts (IBP) will rmove the logarithm from the integrand:
Let
{ (U,=lntanh u, => , U',=sech^2u/tanh u), (V',=sech^2 (2u), =>, V,=1/2tanh(2u) ) :}
Then plugging into the IBP formula:
int \ (U)(V') \ dx = (U)(V) - int \ (V)(U') \ dx
Gives us
int \ (lntanhu)(sech^2(2u)) \ du = (lntanh)(1/2tanh(2u)) - int \ (1/2tanh(2u))(sech^2u/tanh u) \ du
:. I/2 = 1/2 \ tanh(2u) \ lntanhu - 1/2 J
:. \ \ I = tanh(2u) \ lntanh u- J ..... [A]
Where
tanh(2A) = (2 tanh(A))/{1 + tanh^2A)
We have:
J = int \ ((2 tanh(u))/(1 + tanh^2u))(sech^2u/tanh u) \ du
\ \ = 2 \ int \ ( sech^2u )/( 1 + tanh^2u ) \ du
And with this second integral, a simple substitution of the form:
v = tanhu => (dv)/(du) = sech^2u
Gives us after substituting into
J = 2 \ int \ 1/(1+v^2) \ dv
\ \ = 2 arctan(v) + C'
Inserting this result into [A] we get:
I = tanh(2u) \ lntanhu - 2 arctan(v) + C
And restoring the substitutions we get:
I = tanh(2x/2) \ lntanh(x/2) - 2 arctan(tanhu) + C
\ \ = tanh(x) \ lntanh(x/2) - 2 arctan(tanh(x/2)) + C