Evaluate the integral? : int_1^e x^5 (lnx)^2 dx ∫e1x5(lnx)2dx
1 Answer
int_1^e \ x^5 \ (lnx)^2 \ dx = (13e^6 -1)/108
Explanation:
We want to find:
I = int_1^e \ x^5 \ (lnx)^2 \ dx
We can use integration by Parts
Let
{ (u,=(lnx)^2, => (du)/dx,=(2lnx)/x), ((dv)/dx,=x^5, => v,=x^6/6 ) :}
Then plugging into the IBP formula:
int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx
gives us
int_1^e \ (lnx)^2(x^5) \ dx = [(lnx)^2(x^6/6)]_1^e - int_1^e \ (x^6/6)((2lnx)/x) \ dx
:. I = 1/6(e^6ln^2e - ln^21) - 1/3 \ int_1^e \ x^5lnx \ dx
" "= e^6/6 - 1/3 \ int_1^e \ x^5lnx \ dx
So now let us look at this next integral:
J = int_1^e \ x^5lnx \ dx
Again we can use integration by Parts
Let
{ (u,=lnx, => (du)/dx,=1/x), ((dv)/dx,=x^5, => v,=x^6/6 ) :}
and plugging into the IBP formula gives us
int_1^e \ (lnx)(x^5) \ dx = [(lnx)(x^6/6)]_1^e - int_1^e \ (x^6/6)(1/x) \ dx
:. J = 1/6(e^6lne-ln1) - 1/6 \ int_1^e \ x^5 \ dx
" " = e^6/6 - 1/6 \ [x^6/6]_1^e
" " = e^6/6 - 1/36 \ (e^6-1)
Combining these results we get:
I = e^6/6 - 1/3 (e^6/6 - 1/36 \ (e^6-1))
\ \ = e^6/6 - 1/3 (e^6/6 - e^6/36+1/36)
\ \ = e^6/6 - 1/3 (5/36e^6 +1/36)
\ \ = e^6/6 -5/108 e^6 -1/108
\ \ = 13/108 e^6 -1/108
\ \ = (13e^6 -1)/108