Question #4cf9a

1 Answer
Jun 12, 2017

WARNING! Long answer! The mixture is 57 % Mohr's salt and 43 % ammonium sulfate. The mass of "Fe"_2"O"_3 obtained would be 23 mg.

Explanation:

The formula for Mohr's salt is ("NH"_4)_2"Fe"("SO"_4)_2·6"H"_2"O".

To avoid having to write complicated formulas, let's use "M" to represent Mohr's salt and "A" to represent ammonium sulfate.

The equations for the reaction with "BaCl"_2 are

M_text(r):color(white)(m)123.14color(white)(mmmmmmmll)233.39
color(white)(mm)("NH"_4)_2"SO"_4 + "BaCl"_2 → "BaSO"_4 + "2NH"_4"Cl"

and

M_text(r):color(white)(mmmmmm)392.14color(white)(mmmmmmmmmll)233.39
color(white)(mm)("NH"_4)_2"Fe"("SO"_4)_2·6"H"_2"O" + "2BaCl"_2 → "2BaSO"_4 + "4NH"_4"Cl" + "FeCl"_2 + 6"H"_2"O"

Calculate the mass of "BaSO"_4 from "A"

Let x be the mass of "A". Then 0.5 - x is the mass of "M".

"Mass of BaSO"_4 = x color(red)(cancel(color(black)("g A"))) × (1 color(red)(cancel(color(black)("mol A"))))/(123.14 color(red)(cancel(color(black)("g A")))) × (1 color(red)(cancel(color(black)("mol BaSO"_4))))/(1 "mol A") × ("233.99 g BaSO"_4)/(1 color(red)(cancel(color(black)("mol BaSO"_4)))) = 1.9002 x color(white)(l)"g BaSO"_4

Calculate the mass of "BaSO"_4 from "M"

"Mass of BaSO"_4

= (0.5 - x) color(red)(cancel(color(black)("g M"))) × (1 color(red)(cancel(color(black)("mol M"))))/(392.14 color(red)(cancel(color(black)("g M")))) × (2 color(red)(cancel(color(black)("mol BaSO"_4))))/(1 "mol M") × ("233.99 g BaSO"_4)/(1 color(red)(cancel(color(black)("mol BaSO"_4)))) = 1.1934(0.5-x) color(white)(l)"g BaSO"_4 = ("0.5967 - "1.1934x) "g BaSO"_4

Calculate the masses of "A" and "M"

The total mass of "BaSO"_4 is 0.75 g.

1.9002x + "0.5967 - 1.1934"x = 0.75

0.7068x = "0.75 - 0.5967" = 0.153

x = 0.153/0.7068 = 0.22

The mass of "A" is 0.22 g.

The total mass of "A + M" is 0.5 g.

∴ The mass of "M" is (0.5 - 0.22) g = 0.28 g

Calculate the % composition of the mixture

"% A" = (0.22 color(red)(cancel(color(black)("g"))))/(0.5 color(red)(cancel(color(black)("g")))) × 100 % = 43 %

"% M" = "(100 - 43) %" = 57 %"

Calculate the mass of "Fe"_2"O"_3

The "Fe"_2"O"_3 comes from the Mohr's salt.

(a) Calculate the mass of "M" in the sample

"Mass of M in sample" = 0.2 color(red)(cancel(color(black)("g sample"))) × "57 g M"/(100 color(red)(cancel(color(black)("g Sample")))) = "0.114 g M"

(b) Write the partial equation for the pyrolysis reaction

M_text(r):color(white)(mmmll)392.14color(white)(mmmmmmm)159.69
color(white)(mm)2("NH"_4)_2"Fe"("SO"_4)_2·6"H"_2"O" → "Fe"_2"O"_3

(c) Calculate the mass of "Fe"_2"O"_3

"Mass of Fe"_2"O"_3 = 0.114 color(red)(cancel(color(black)("g M"))) × (1 color(red)(cancel(color(black)("mol M"))))/(392.14 color(red)(cancel(color(black)("g M")))) × (1 color(red)(cancel(color(black)("mol Fe"_2"O"_3))))/(2 color(red)(cancel(color(black)("mol M")))) × ("159.69 g Fe"_2"O"_3)/(1 color(red)(cancel(color(black)("mol Fe"_2"O"_3)))) = "0.023 g Fe"_2"O"_3 = "23 mg Fe"_2"O"_3