Evaluate the limit #lim_(x rarr 0^+) (1+1/x)^x #?

2 Answers
Jul 23, 2017

#lim_(xrarr0^+)(1+1/x)^x = 1#

Explanation:

#lim_(xrarr0^+)1/x = 0#, so

#lim_(xrarr0^+)(1+1/x) = 1#, and

#lim_(xrarr0^+)(1+1/x)^x = 1^0 = 1#

Jul 23, 2017

# lim_(x rarr 0^+) (1+1/x)^x = 1 #

Explanation:

We seek:

# L = lim_(x rarr 0^+) (1+1/x)^x #

As the log function is monotonic we can tak logs of both sides to get:

# ln L = ln {lim_(x rarr 0^+) (1+1/x)^x} #
# \ \ \ \ \ \ = lim_(x rarr 0^+) ln {(1+1/x)^x} #
# \ \ \ \ \ \ = lim_(x rarr 0^+) xln (1+1/x) #
# \ \ \ \ \ \ = lim_(x rarr 0^+) xln ((x+1)/x) #
# \ \ \ \ \ \ = lim_(x rarr 0^+) x{ln (x+1) - lnx} #
# \ \ \ \ \ \ = lim_(x rarr 0^+) {xln (x+1) - xlnx} #
# \ \ \ \ \ \ = lim_(x rarr 0^+) xln (x+1) - lim_(x rarr 0^+)xlnx #
# \ \ \ \ \ \ = 0 - 0 #

Thus:

# L = e^0 = 1 #