Evaluate the integral? : int 1/(xsqrt(1-x^4)) dx∫1x√1−x4dx
1 Answer
int \ 1/(xsqrt(1-x^4)) \ dx = 1/4 (ln|sqrt(1-x^4)-1| -ln|sqrt(1-x^4)+1 )+ C
Explanation:
We seek:
I = 1/(xsqrt(1-x^4)) \ dx
Let us attempt an substitution of the form:
u = sqrt(1-x^4) => u^2 = 1-x^4 , andx^4 = 1-u^2
And differentiating wrt
2u(du)/dx = -4x^3 => (2u)/(-4x^4) (du)/dx = (-4x^3)/(-4x^4)
:. -(u)/(2x^4) (du)/dx = 1/x
If we substitute this into the integral, we get:
I = int \ (1/u) ( -(u)/(2(1-u^2))) \ du
\ \ = 1/2 \ int \ 1/(u^2-1) \ du
Now, we can decompose this new integrand into partial fractions:
1/(u^2-1) -= 1/((u+1)(u-1))
\ \ \ \ \ \ \ \ \ \ \ \ = A/(u+1) + B/(u-1)
\ \ \ \ \ \ \ \ \ \ \ \ = ( A(u-1) + B(u+1) ) / ((u+1)(u-1))
Leadin to:
1 = (u-1) + B(u+1)
Where
Put
u = +1 => 0 = 2B => B=1/2
Putu = -1 => 0 = -2A => A=-1/2
Thus:
I = 1/2 \ int \ 1/(u^2-1) \ du
\ \ = 1/2 \ int \ {(-1/2)/(u+1) + (1/2)/(u-1)} \ du
\ \ = 1/4 \ int \ {1/(u-1) -1/(u+1)} \ du
Which we can directly integrate:
I = 1/4 (ln|u-1| -0 ln|u+1 )+ C
Restoring the substitution:
I = 1/4 (ln|sqrt(1-x^4)-1| -ln|sqrt(1-x^4)+1 )+ C