Question #5b826
1 Answer
["Br"_2]_(eq) = "0.0108 M"
["Cl"_2]_(eq) = "0.0108 M"
["BrCl"]_(eq) = "0.0284 M"
What we're really doing here is that we're given an initial state with
Concentrations are a matter of "what did we start with?", and "what did we end with?", and not "how did we get there?".
We would construct an ICE table to describe the change:
color(orange)(2) "BrCl"color(red)((g)) " "" "rightleftharpoons" " "Br"_2color(red)((g)) " "+" " "Cl"_2color(red)((g))
"I"" ""0.050 M"" "" "" "" "" ""0 M"" "" "" "" ""0 M"
"C"" "-color(orange)(2)x" "" "" "" "" "+x" "" "" "+x
"E"" "(0.050 - color(orange)(2)x) "M"" "" "x" M"" "" "" "x" M" where
x represents["Br"_2]_(eq) ,["Cl"_2]_(eq) , etc.
Notice how this reaction does NOT occur in aqueous solution... I will assume low pressure, so that bromine is a gas... Anyways, that gives an equilibrium state (note the stoichiometry in
K_(eq) = 0.145 = (["Br"_2]["Cl"_2])/(["BrCl"]^2)
= x^2/(0.050 - 2x)^2
And we are lucky to have a perfect square...
sqrt(0.145) = x/(0.050 - 2x)
sqrt(0.145)(0.050 - 2x) = x
sqrt(0.145)cdot0.050 - 2sqrt(0.145)x = x
sqrt(0.145)cdot0.050 = x + 2sqrt(0.145)x
x = (sqrt(0.145)cdot0.050)/(1 + 2sqrt(0.145)) = "0.01081 M"
Thus, we have:
color(blue)(["Br"_2]_(eq) = "0.0108 M")
color(blue)(["Cl"_2]_(eq) = "0.0108 M")
color(blue)(["BrCl"]_(eq) = "0.0284 M")
Verify that this still gives