Prove that # 1/(csctheta+1) + 1/(csctheta-1) -= 2sec theta \ tan theta #?

1 Answer
Sep 12, 2017

The identity as quoted is invalid, However:

# 1/(csctheta+1) + 1/(csctheta-1) -= 2sec theta \ tan theta #

Explanation:

The identity as quoted is invalid, However:

We have:

# 1/(csctheta+1) + 1/(csctheta-1) -= ((csctheta-1) + (csctheta+1))/((csctheta+1)(csctheta-1)) #

# " " = (csctheta-1 + csctheta+1)/(csc^2theta+csctheta-csctheta-1) #

# " " = (2csctheta)/(csc^2theta-1) #

Using the trig identity #1+cot^2A -= csc^2A # we have:

# 1/(csctheta+1) + 1/(csctheta-1) = (2csctheta)/(1+cot^2theta-1) #

# " " = (2csctheta)/(cot^2theta) #

# " " = (2csctheta)(tan^2theta) #

# " " = (2/sintheta)(sin theta)/(cos theta)tan theta #

# " " = 2/(cos theta)tan theta #

# " " = 2sec theta \ tan theta #