Prove that the derivative of (e^(4x)/4-xe^(4x) ) = pxe^(4x) and find p?

1 Answer
Sep 25, 2017

p=-4

Explanation:

Differentiating wrt x and applying the product rule, and chain rule we get:

d/dx (e^(4x)/4-xe^(4x) ) = d/dx (e^(4x)/4) - x(d/dx e^(4x) ) - (d/dx x)(e^(4x) )

" " = d/dx ((4e^(4x))/4) - x(4e^(4x) ) - (1)(e^(4x) )

" " = e^(4x) - 4xe^(4x) - e^(4x )

" " = - 4xe^(4x)

" " = pxe^(4x) , where p=-4