If f(x)=secxf(x)=secx then calculate f''(pi/3)?

1 Answer
Sep 29, 2017

f''(pi/3) = 14

Explanation:

We have:

f(x) = secx

Differentiate wrt x:

f'(x) = secxtanx

Differentiate wrt x applying the product rule:

f''(x) = secx(d/dxtanx) + (d/dxsecx)tanx
\ \ \ \ \ \ \ \ \ \ \ = secx(sec^2x) + (secxtanx)tanx
\ \ \ \ \ \ \ \ \ \ \ = sec^3x + secxtan^2x

When x=pi/3=> tanx=sqrt(3), secx=2, And so:

f''(pi/3) = (2)^3 + (2)(3) = 14