If f(x)=secxf(x)=secx then calculate f''(pi/3)?
1 Answer
Sep 29, 2017
f''(pi/3) = 14
Explanation:
We have:
f(x) = secx
Differentiate wrt
f'(x) = secxtanx
Differentiate wrt
f''(x) = secx(d/dxtanx) + (d/dxsecx)tanx
\ \ \ \ \ \ \ \ \ \ \ = secx(sec^2x) + (secxtanx)tanx
\ \ \ \ \ \ \ \ \ \ \ = sec^3x + secxtan^2x
When
f''(pi/3) = (2)^3 + (2)(3) = 14