If #f(x)=secx# then calculate #f''(pi/3)#?
1 Answer
Sep 29, 2017
# f''(pi/3) = 14 #
Explanation:
We have:
# f(x) = secx #
Differentiate wrt
# f'(x) = secxtanx #
Differentiate wrt
# f''(x) = secx(d/dxtanx) + (d/dxsecx)tanx#
# \ \ \ \ \ \ \ \ \ \ \ = secx(sec^2x) + (secxtanx)tanx#
# \ \ \ \ \ \ \ \ \ \ \ = sec^3x + secxtan^2x#
When
# f''(pi/3) = (2)^3 + (2)(3) = 14 #