What is I = int \ sinlnx-coslnx \ dx ?

1 Answer
Nov 5, 2017

We seek:

I = int \ sinlnx-coslnx \ dx
\ \ = int \ sinlnx \ dx - int \ coslnx \ dx

We can apply integration by Parts to the second integral

Let { (u,=coslnx, => (du)/dx,=(-sinlnx)/x), ((dv)/dx,=1, => v,=x ) :}

Then plugging into the IBP formula:

int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx

we get:

int \ (coslnx)(1) \ dx = (coslnx)(x) - int \ (x(-sinlnx)/x) \ dx
" " = xcoslnx + int \ sinlnx \ dx + C

Using this result we get:

I = int \ sinlnx \ dx - {xcoslnx + int \ sinlnx \ dx } + C
\ \ = - xcoslnx + C