What is I = int \ sinlnx-coslnx \ dx ?
1 Answer
Nov 5, 2017
We seek:
I = int \ sinlnx-coslnx \ dx
\ \ = int \ sinlnx \ dx - int \ coslnx \ dx
We can apply integration by Parts to the second integral
Let
{ (u,=coslnx, => (du)/dx,=(-sinlnx)/x), ((dv)/dx,=1, => v,=x ) :}
Then plugging into the IBP formula:
int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx
we get:
int \ (coslnx)(1) \ dx = (coslnx)(x) - int \ (x(-sinlnx)/x) \ dx
" " = xcoslnx + int \ sinlnx \ dx + C
Using this result we get:
I = int \ sinlnx \ dx - {xcoslnx + int \ sinlnx \ dx } + C
\ \ = - xcoslnx + C