Simplify # cot theta - tan theta #?
1 Answer
Nov 12, 2017
# cot theta - tan theta -= 2cot(2theta)#
Explanation:
We can write the expression as:
# cot theta - tan theta -= costheta/sintheta - sintheta/costheta#
# " " = (costheta costheta - sintheta sintheta)/(sinthetacostheta#
# " " = (cos^2theta - sin^2theta)/(sinthetacostheta#
And using the identities:
# sin2A-= 2sinAcosA #
# cos2A-= cos^2A-sin^2A #
We have:
# cot theta - tan theta -= (cos2theta)/(1/2sin2theta#
# " " = 2cot(2theta)#
We can verify the graphically:
# cot theta - tan theta #
graph{cot x - tan x [-10, 10, -5, 5]}
# 2cot(2theta)#
graph{2cot(2x) [-10, 10, -5, 5]}