Evaluate the integral int \ xe^(-ax^2) \ dx ?

1 Answer
Nov 25, 2017

int \ xe^(-ax^2) \ dx = -1/(2a) \ e^(-ax^2) +C

Explanation:

I assume we seek:

I = int \ xe^(-ax^2) \ dx

We can perform a substitution:

u = -ax^2 => (du)/(dx) = -2ax

Then we can rewrite the integral and perform a substitution

I = -1/(2a) \ int \ (-2ax)e^(-ax^2) \ dx
\ \ = -1/(2a) \ int \ e^u \ du
\ \ = -1/(2a) \ e^u +C

And restoring the substitution we have:

I = -1/(2a) \ e^(-ax^2) +C