Evaluate the integral int \ xe^(-ax^2) \ dx ?
1 Answer
Nov 25, 2017
int \ xe^(-ax^2) \ dx = -1/(2a) \ e^(-ax^2) +C
Explanation:
I assume we seek:
I = int \ xe^(-ax^2) \ dx
We can perform a substitution:
u = -ax^2 => (du)/(dx) = -2ax
Then we can rewrite the integral and perform a substitution
I = -1/(2a) \ int \ (-2ax)e^(-ax^2) \ dx
\ \ = -1/(2a) \ int \ e^u \ du
\ \ = -1/(2a) \ e^u +C
And restoring the substitution we have:
I = -1/(2a) \ e^(-ax^2) +C