Evaluate the integral? : int 1/( (r+1)sqrt(r^2+2r)) dr 1(r+1)r2+2rdr

3 Answers
Dec 8, 2017

int (dr)/[(r+1)*sqrt(r^2+2r)]=sec^(-1) (r+1)+Cdr(r+1)r2+2r=sec1(r+1)+C

Explanation:

int (dr)/[(r+1)*sqrt(r^2+2r)]dr(r+1)r2+2r

=int (dr)/[(r+1)*sqrt((r+1)^2-1)]dr(r+1)(r+1)21

After using r+1=secur+1=secu and dr=secu*tanu*dudr=secutanudu substitution, this integral became

int (secu*tanu*du)/[secu*sqrt((secu)^2-1)]secutanudusecu(secu)21

=int (tanu*du)/sqrt((tanu)^2)tanudu(tanu)2

=int (tanu*du)/(tanutanudutanu

=int dudu

=u+cu+c

After using r+1=secur+1=secu and u=sec^(-1) (r+1)u=sec1(r+1) inverse transforms, I found,

int (dr)/[(r+1)*sqrt(r^2+2r)]=sec^(-1) (r+1)+Cdr(r+1)r2+2r=sec1(r+1)+C

Dec 8, 2017

int \ 1/( (r+1)sqrt(r^2+2r)) \ dr =arctan(sqrt(r^2+2r)) + C

Explanation:

We seek:

I = int \ 1/( (r+1)sqrt(r^2+2r)) \ dr

If we attempt a substitution of the form:

u = sqrt(r^2+2r) => (du)/(dr) = 1/2(r^2+2r)^(-1/2) * (2r+2)
:. (du)/(dr) = (r+1)/sqrt(r^2+2r) => (dr)/(du) = sqrt(r^2+2r)/(r+1)

Substituting into the integral we get:

I = int \ sqrt(r^2+2r)/( (r+1)(r^2+2r)) \ sqrt(r^2+2r)/(r+1) \ du
\ \ = int \ 1/(r+1)^2 \ du
\ \ = int \ 1/(r^2+2r+1) \ du
\ \ = int \ 1/(u^2+1) \ du

This is now a standard integral and we have:

I =arctan(u) + C

And restoring the substitution we get:

I =arctan(sqrt(r^2+2r)) + C

Note that although this does not explicitly use a trigonometric substitution that the derivation of the standard result

int \ 1/(u^2+1) \ du = arctan(u) + C

Does require a trigonometric substitution u=tantheta

Dec 8, 2017

-arc sin(1/(r+1))+C.

Explanation:

Here is another Method to solve the Problem.

Let, I=int1/{(r+1)sqrt(r^2+2r)}dr.

The Substitution for this type of Integral is (r+1)=1/x.

:. dr=-1/x^2dx.

Also, r^2+2r=(r^2+2r+1)-1=(r+1)^2-1, i.e.,

r^2+2r=(1/x)^2-1=(1-x^2)/x^2.

:. I=int1/{(1/x)sqrt((1-x^2)/x^2)}*(-1/x^2)dx,

=-int1/sqrt(1-x^2)dx,

=-arc sinx.

Since, (r+1)=1/x, we have,

I=-arc sin(1/(r+1))+C.

Enjoy Maths.!

N.B. : I leave it as an Exercise to the Questioner to

show that the other 2 Answers obtained by Respected

Cem Sentin and Steve M are the same!