Find int 1/((1+x^2)sqrt(1-arctanx)) dx ∫1(1+x2)√1−arctanxdx?
1 Answer
Dec 13, 2017
int \ 1/((1+x^2)sqrt(1-arctanx)) \ dx = - 2sqrt(1-arctanx) + C
Explanation:
We seek:
I = int \ 1/((1+x^2)sqrt(1-arctanx)) \ dx
We can perform a substitution, Let:
u = 1-arctanx => (du)/dx = -1/(x^2+1)
Substituting into the integral we get:
I = int \ (-1)/sqrt(u) \ du
\ \ = int \ (-1)/sqrt(u) \ du
\ \ = - \ int \ (1)/sqrt(u) \ du
This is now a trivial integration, so sing the power rule:
I = - 2sqrt(u) + C
Finally, restoring the substitution:
I = - 2sqrt(1-arctanx) + C