Find int 1/((1+x^2)sqrt(1-arctanx)) dx 1(1+x2)1arctanxdx?

1 Answer
Dec 13, 2017

int \ 1/((1+x^2)sqrt(1-arctanx)) \ dx = - 2sqrt(1-arctanx) + C

Explanation:

We seek:

I = int \ 1/((1+x^2)sqrt(1-arctanx)) \ dx

We can perform a substitution, Let:

u = 1-arctanx => (du)/dx = -1/(x^2+1)

Substituting into the integral we get:

I = int \ (-1)/sqrt(u) \ du
\ \ = int \ (-1)/sqrt(u) \ du
\ \ = - \ int \ (1)/sqrt(u) \ du

This is now a trivial integration, so sing the power rule:

I = - 2sqrt(u) + C

Finally, restoring the substitution:

I = - 2sqrt(1-arctanx) + C