Simplify #cosx+sinx/cotx#?

2 Answers
Dec 15, 2017

Please see below.

Explanation:

#cosx+sinx/cotx#

= #cosx+sinx/(cosx/sinx)#

= #cosx+sinx×sinx/cosx#

= #cosx+sin^2x/cosx#

= #(cos^2x+sin^2x)/cosx#

= #1/cosx#

= #secx#

Dec 15, 2017

#"see explanation"#

Explanation:

#"using the "color(blue)"trigonometric identities"#

#•color(white)(x)cotx=cosx/sinx#

#•color(white)(x)secx=1/cosx#

#•color(white)(x)cos^2x+sin^2x=1#

#"consider the left hand side"#

#cosx+sinx/cotx#

#=cosx+sinx/(cosx/sinx)#

#=cosx+sinx/1xxsinx/cosx#

#=(cos^2x+sin^2x)/cosxlarrcolor(blue)"LCD of cosx"#

#=1/cosx#

#=secx=" right hand side "rArr"verified"#