#sin^2x=cos^2(x/2)#
#sin^2x=(cos(x/2))^2#
#sin^2x=(sqrt((1+cosx)/2))^2#
#sin^2x=(1+cosx)/2#
#2sin^2x=1+cosx#
#2(1-cos^2x)-cosx-1=0#
#2-2cos^2x-cosx-1=0#
#-2cosx^2x-cosx+1=0#
Let #u = cosx#:
#-2u^2-u+1=0#
#2u^2+u-1=0#
#(2u-1)(u+1)=0#
#u=-1,1/2#
Substitute #cosx# back in for #u#:
#cosx=-1,cosx=1/2#
The solution for #cosx=-1# is #pi#, and solutions for #cosx=1/2# are #pi/3# and #(5pi)/3#. The final solution set is:
#x=pi/3,pi,(5pi)/3#