Evaluate the integral int \ sinx/(2+cos^2x) \ dx ?

1 Answer
Jan 14, 2018

int \ sinx/(2+cos^2x) \ dx = -sqrt(2)/2 arctan(cosx/sqrt(2)) + C

Explanation:

We seek:

I = int \ sinx/(2+cos^2x) \ dx

If we look at the denominator then a substitution:

2u^2 = cos^2x

looks promising, so let us try the substitution:

u = cosx/sqrt(2) => 2u^2 = cos^2x

Differentiating implicitly wrt x:

(du)/dx = -sinx/sqrt(2)

So substituting into the integral, it becomes:

I = int \ (-sqrt(2))/(2+2u^2) \ du
\ \ = -sqrt(2) \ int \ 1/(2(1+u^2)) \ du
\ \ = -sqrt(2)/2 \ int \ 1/(1+u^2) \ du

This is now a standard result, thus:

I = -sqrt(2)/2 arctan(u) + C

Then restoring the substitution:

I = -sqrt(2)/2 arctan(cosx/sqrt(2)) + C