Evaluate the integral int \ sinx/(2+cos^2x) \ dx ?
1 Answer
Jan 14, 2018
int \ sinx/(2+cos^2x) \ dx = -sqrt(2)/2 arctan(cosx/sqrt(2)) + C
Explanation:
We seek:
I = int \ sinx/(2+cos^2x) \ dx
If we look at the denominator then a substitution:
2u^2 = cos^2x
looks promising, so let us try the substitution:
u = cosx/sqrt(2) => 2u^2 = cos^2x
Differentiating implicitly wrt
(du)/dx = -sinx/sqrt(2)
So substituting into the integral, it becomes:
I = int \ (-sqrt(2))/(2+2u^2) \ du
\ \ = -sqrt(2) \ int \ 1/(2(1+u^2)) \ du
\ \ = -sqrt(2)/2 \ int \ 1/(1+u^2) \ du
This is now a standard result, thus:
I = -sqrt(2)/2 arctan(u) + C
Then restoring the substitution:
I = -sqrt(2)/2 arctan(cosx/sqrt(2)) + C