#2x^3y+3xy^2=5#
First we take #d/dx# of every term.
#d/dx[2x^3y]+d/dx[3xy^2]=d/dx[5]#
Then we use the product rule, #d/dx[f(x)g(y)]=f(x)d/dx[g(y)]+g(y)d/dx[f(x)]#
#yd/dx[2x^3]+2x^3d/dx[y]+3xd/dx[y^2]+y^2d/dx[3x]=d/dx[5]#
#y(6x^2)+2x^3d/dx[y]+3xd/dx[y^2]+y^2(3)=0#
the chain rule tells us that #d/dx=d/dyxx(dy)/(dx)#
#y(6x^2)+(dy)/(dx)2x^3d/dy[y]+(dy)/(dx)3xd/dy[y^2]+y^2(3)=0#
#6x^2y+(dy)/(dx)2x^3(1)+(dy)/(dx)3x(2y)+3y^2=0#
#6x^2y+(dy)/(dx)2x^3+(dy)/(dx)6xy+3y^2=0#
Now we rearrange:
#(dy)/(dx)2x^3+(dy)/(dx)6xy=-3y^2-6x^2y#
#(dy)/(dx)(2x^3+6xy)=-3y^2-6x^2y#
#(dy)/(dx)=(-3y^2-6x^2y)/(2x^3+6xy)#
#color(white)((dy)/(dx))=-(3y^2+6x^2y)/(2x^3+6xy)#
#color(white)((dy)/(dx))=-(3y(y+2x^2))/(2x(x^2+3y))#