Show that? # (1-tan^2x)/(1+tan^2x) = cos^2-sin^2x #
1 Answer
Jan 26, 2018
Consider the LHS of the given expression:
# LHS = (1-tan^2x)/(1+tan^2x) #
# \ \ \ \ \ \ \ \ = (1-sin^2x/cos^2x)/(1+sin^2x/cos^2x) #
# \ \ \ \ \ \ \ \ = ((cos^2-sin^2x)/cos^2x)/((cos^2x+sin^2x)/cos^2x) #
# \ \ \ \ \ \ \ \ = ((cos^2-sin^2x)/cos^2x) * (cos^2x/(cos^2x+sin^2x)) #
# \ \ \ \ \ \ \ \ = (cos^2-sin^2x)/(cos^2x+sin^2x) #
# \ \ \ \ \ \ \ \ = (cos^2-sin^2x)/1 \ \ \ # , as#cos^2A+sin^2xA -= 1 #
# \ \ \ \ \ \ \ \ = cos^2-sin^2x \ \ \ # QED