Evaluate the integral I = int_0^3 \ xf(x^2) \ dx ?
1 Answer
Jan 26, 2018
int_0^3 \ xf(x^2) \ dx = 3/2
Explanation:
We seek:
I = int_0^3 \ xf(x^2) \ dx
We can perform a substitution:
Let
u=x^2 => (du)/dx = 2x
And the substitution will require a change in limits:
When
x={ (0),(3) :} => u={ (0),(9) :}
Substituting into the integral, changing the variable of integration from
I = 1/2 \ int_0^3 \ 2xf(x^2) \ dx
\ \ = 1/2 \ int_0^9 \ f(u) \ du
\ \ = 1/2 \ (3) , asint_0^9 \ f(u) \ du = int_0^9 \ f(x) \ dx
\ \ = 3/2