Evaluate int \ e^(-st)sint \ dt ?

1 Answer
Jan 28, 2018

int \ e^(-st)sint \ dt = -(e^(-st)(s sint +cost ))/(s^2+1) + C

Explanation:

We seek the integral:

I =int \ e^(-st)sint \ dt

We can then apply Integration By Parts:

Let { (u,=sint, => (du)/dt,=cost), ((dv)/dt,=e^(-st), => v,=-1/se^(-st) ) :}

Then plugging into the IBP formula:

int \ (u)((dv)/dt) \ dt = (u)(v) - int \ (v)((du)/dt) \ dt

We have:

int \ (sinmt)(e^(-st)) \ dt = (sin t)(-1/se^(-st)) - int \ (-1/se^(-st))(cos t) \ dt

:. I = -1/s e^(-st)sint + 1/s int \ e^(-st)cos t \ dt

Now consider the integral given by:

I_2 = int \ e^(-st)cos t \ dt

We will now need to apply IBP again:

Let { (u,=cost, => (du)/dt,=-sint), ((dv)/dt,=e^(-st), => v,=-1/se^(-st) ) :}

Then plugging into the IBP formula we have::

int \ (cost)(e^(-st)) \ dt = (cost)(-1/se^(-st)v) - int \ (-1/se^(-st))(-sint) \ dt

I_2 = -1/s e^(-st)cost - 1/s \ int \ e^(-st)sint \ dt
I_2 = -1/s e^(-st)cost - 1/s I

And so combining the results we find that:

I = -1/s e^(-st)sint + 1/s {-1/s e^(-st)cost - 1/s I}

As s != 0, then by Multiplying by s^2 we get:

s^2I = -s e^(-st)sint - e^(-st)cost - I

:. s^2I +I = -s e^(-st)sint - e^(-st)cost

:. (s^2+1)I = -e^(-st)(s sint +cost )

:. I = (-e^(-st)(s sint +cost ))/(s^2+1)

And not forgetting the constant of integration,

I = (-e^(-st)(s sint +cost ))/(s^2+1) + C