Question #bbd53

1 Answer
Feb 5, 2018

#0.647# radians

Explanation:

If #P_1=xpbb(i)+ypbb(j)+zpbb(k)# is the position vector of a point in the plane, and #x,y,z# is a point in the plane, with position vector:

#P=xbb(i)+ybb(j)+zbb(k)#

Then #P-P_1# is a vector lying in the plane.

If the normal to the plane is #bb(n)= abb(i)+b bb(j)+cbb(k)#

We know the dot product of a vector in the plane and the normal to the plane is #0#

#P-P_1=(x-xp)bb(i)+(y-yp)bb(j)+(z-zp)bb(k)#

#bb(n)*(P-P_1)=0=ax-axp+by-byp+cz-czp=0#

#ax+by+cz=axp+byp+czp#

Given the equation of a plane in the form:

#ax+by+cz=d#

We can see:

#ax+by+cz=axp+byp+czp#
#ax+by+cz=d#

The purpose of this is so we can find the angle between the normals to the plane. This is the same as the angle between the planes:

Our equations are:

#10x+5y+8z=-7#

#9x+10y+z=-6#

The normals are just:

#bb(n_1)=10bb(i)+5bb(j)+8bb(k)#

#bb(n_2)=9bb(i)+10bb(j)+bb(k)#

Using the dot product:

#a*b=||a||*||b||cos(theta)#

#bb(n_1)*bb(n_2)=(10*9+5*10+8*1)=148#

#||bb(n_1)||=sqrt((10)^2+(5)^2+(8)^2)=sqrt(189)=3sqrt(21)#

#||bb(n_2)||=sqrt((9)^2+(10)^2+(1)^2)=sqrt(182)#

#cos(theta)=148/(3sqrt(21)*sqrt(182))#

#theta=arccos(cos(theta))=arccos(148/(3sqrt(21)*sqrt(182)))=0.64# radians

This is the acute angle.

obtuse angle is:

#pi-0.647# radians