A gas sitting in a 5L container at 12 degrees celcius at 3atm, how many moles do you have?

3 Answers
Jul 9, 2018

A bit over half a mole....

Explanation:

We simply solve the Ideal Gas equation...

n=(PV)/(RT)n=PVRT

=(3*atmxx5.0*L)/(0.0821*(L*atm)/(K*mol)*(12+273.15)*K)=3atm×5.0L0.0821LatmKmol(12+273.15)K

=??*mol...

0.641435498778218\approx 0.641\ \text{moles}

Explanation:

From ideal gas equation

PV=nRT

where:

  • P is absolute pressure of gas

  • V is volume of gas

  • n is number of moles of gas

  • R=8.314\ \text{J/mole K} is universal gas constant.

  • T is absolute temperature of gas

n=(PV)/(RT)

Setting the values

  • P=3\ "atm"=3 xx 101325\ "Pa",

  • V=5\ "L"=5 xx 10^{-3}\ "m"^3

  • R=8.314 \ \text{J/mole K}

  • T=12^0 "C"=12+273=285\ "K"

we get, the number of moles

n=\frac{3\times 101325\times 5\times 10^{-3} }{8.314\times 285}

=0.641435498778218\ \text{moles}

\approx 0.641\ \text{moles}

Jul 10, 2018

You have "0.6 mol" of gas.

Explanation:

Use the ideal gas law equation:

PV=nRT,

where:

P is pressure, V is volume, n is moles, R is the gas constant, and T is the temperature in Kelvins.

Known

P="3 atm"

V="5 L"

R="0.08206 L atm K"^(-1) "mol"^(-1)

T="12"^@"C + 273.15"="285 K"

Unknown

n

Solution

Rearrange the equation to isolate moles. Plug in the known values and solve.

n=(PV)/(RT)

n=(3color(red)cancel(color(black)("atm"))xx5color(red)cancel(color(black)("L")))/(0.08206color(red)cancel(color(black)("L")) color(red)cancel(color(black)("atm")) color(red)cancel(color(black)("K"))^(-1) "mol"^(-1)xx285color(red)cancel(color(black)("K")))="0.6 mol"
(rounded to one significant figure)