A line segment has endpoints at (5 ,3 )(5,3) and (5 ,4)(5,4). If the line segment is rotated about the origin by pi /2 π2, translated horizontally by -1 1, and reflected about the x-axis, what will the line segment's new endpoints be?

1 Answer
Oct 2, 2016

(5,3)to(-4,-5)" and " (5,4)to(-5,-5)(5,3)(4,5) and (5,4)(5,5)

Explanation:

Since there are 3 transformations to be performed, name the endpoints A(5 ,3) and B(5 ,4) so that we can follow the changes that occur to them.

First transformation Under a rotation about the origin of pi/2π2

a point (x , y) → (-y ,x)

hence A(5 ,3) → A'(-3 ,5) and B(5 ,4) → B'(-4 ,5)

Second transformation Under a translation ((-1),(0))

a point (x ,y) → (x-1 ,y+0) → (x-1 ,y)

hence A'(-3 ,5) → A''(-4 ,5) and B'(-4 ,5) → B''(-5 ,5)

Third transformation Under a reflection in the x-axis

a point (x ,y) → (x ,-y)

hence A''(-4 ,5) → A'''(-4 ,-5) and B''(-5 ,5) → B'''(-5 ,-5)

Thus after all 3 transformations.

(5,3)to(-4,-5)" and " (5,4)to(-5,-5)