We can use the Ideal Gas Law to calculate the partial pressures.
color(blue)(bar(ul(|color(white)(a/a)pV = nRTcolor(white)(a/a)|)))" "
or
p = (nRT)/V
The number of moles n is given by
n = m/M
So,
p = (mRT)/(MV)
Calculate p_text(O₂)
m color(white)(l)= "7.67 g"
Rcolor(white)(l) = "0.082 06 L·atm·K"^"-1""mol"^"-1"
Tcolor(white)(l) = "65 °C" = "338.15 K"
M = "32.00 g·mol"^"-1""
V color(white)(l)= "9.77 L"
∴ p = (7.67 color(red)(cancel(color(black)("g"))) × "0.082 06" color(red)(cancel(color(black)("L")))·"atm"color(red)(cancel(color(black)("·K"^"-1""mol"^"-1"))) × 338.15 color(red)(cancel(color(black)("K"))))/(32.00 color(red)(cancel(color(black)("g·mol"^"-1"))) × 9.77 color(red)(cancel(color(black)("L")))) = "0.681 atm"
Calculate p_text(Ne)
m color(white)(l)= "2.84 g"
Rcolor(white)(l) = "0.082 06 L·atm·K"^"-1""mol"^"-1"
Tcolor(white)(l) = "65 °C" = "338.15 K"
M = "20.18 g·mol"^"-1""
V color(white)(l)= "9.77 L"
∴ p = (2.84 color(red)(cancel(color(black)("g"))) × "0.082 06" color(red)(cancel(color(black)("L")))·"atm"color(red)(cancel(color(black)("·K"^"-1""mol"^"-1"))) × 338.15 color(red)(cancel(color(black)("K"))))/(20.18 color(red)(cancel(color(black)("g·mol"^"-1"))) × 9.77 color(red)(cancel(color(black)("L")))) = "0.3997 atm"
Calculate the total pressure
p_text(tot) = p_text(O₂) + p_text(Ne) = "(0.681 + 0.3997) atm" = "1.081 atm"