A particle of mass m strikes a wall at an angle of incidence 60° with velocity V elastically. Then the change in momentum is?

1 Answer
Feb 5, 2018

#"the cange in momentum :"Delta P= m v#

Explanation:

enter image source here

  • The reflection of the particle on the wall is shown as animation.
  • Reflection of the particle will be comply to the Snell's laws.
    -Collision is perfectly elastic so energy does not lost.
  • The magnitude of the velocity at the end of the collision does not change.
  • You can find momentum change in different ways.
  • The geometric calculation is shown below.

enter image source here

#Delta vec P=vec P_a-vec P_b#

#vec P_b=m vec v#

#vec P_a=m vec v#

#Delta P=sqrt( P_b^2+ P_a^2-2 P_b P_a cos theta)#

#Delta P=sqrt((m v)^2+(m v)^2-2.m v. m v* cos (60))#

#cos (60)=1/2#

#Delta P=sqrt((m v)^2+(m v)^2-cancel(2). m v. m v* 1/cancel(2))#

#Delta P=sqrt((m v)^2+cancel((m v)^2)-cancel((m v)^2))#

#Delta P=sqrt((m v)^2)#

#Delta P= m v#